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The propagation of weakly nonlinear acoustic waves in a non-uniform medium is 
treated. It is assumed that the waves are one-dimensional. Non-uniformities arising 
from variable cross-section and stratification are included. The effect of non- 
uniformities on unidirectional waves on an infinite interval and resonant waves on a 
finite interval is discussed for a near-uniform reference state (geometrical acoustics 
limit) and for stronger non-uniformities in the finite-interval case. Nonlinearities are 
taken into account up to quadratic and, wherever necessary, cubic order in the wave 
amplitude. 

Unidirectional waves in the geometrical acoustics limit can formally be reduced to 
the behaviour in a uniform system described by a kinematic wave equation with 
constant coefficients. For illustration acceleration waves in a weakly non-uniform 
medium are treated. The resonance case in the geometrical acoustics limit is closely 
related to resonance in a uniform system so that the methods developed for that 
situation require only slight modification. For larger influence of non-uniformity the 
geometrical acoustics limit does not apply and the resonance problem may lead to a 
Duffing oscillator type of behaviour. 

1. Introduction 
This paper presents results on nonlinear acoustic wave propagation in a non- 

uniform medium. The study is motivated by the fact that acoustic wave propagation 
is inevitably affected by non-uniformity in practical applications or experimental 
situations so that it is necessary to estimate its influence. There are several references 
that deal with acoustic wave propagation in non-uniform media. Naturally, the 
majority of references treats linear waves (Brekhovskikh 1960; Blokhintsev 1946), 
but there are some that take into account nonlinearity as well (Seymour & Mortell 
1975; Lighthill 1978; Pierce 1981; Hayes & Runyan 1970; Varley & Cumberbatch 
1970). Keller & Lu Ting (1966) described free nonlinear one-dimensional waves on a 
finite interval for various mechanical systems (nonlinear strings, beams and gas 
columns with non-uniformities. In a non-fluid-mechanical context Nayfeh & Mook 
(1979) use the multiple scale method to derive results in a non-uniform solid nonlinear 
Hookean slab of variable cross-section and stiffness. Crighton (1992) gives a treatment 
of unidirectional wave motion in an ideal gas with slowly varying cross-section A(x) .  

Here the medium is also taken to be an ideal gas for simplicity; this is not an essential 
restriction and can easily be discarded. The sources of the non-uniformity are a 
variable cross-section along the direction of propagation and a density stratification 
imposed, say, by a temperature gradient along the same direction. A case of particular 
interest is the non-uniformity being weak enough that geometrical acoustics 
assumptions apply. In this case the gradual change of the non-uniformities is assumed 



184 W. Ellermeier 

to be small enough for wave reflections due to variable cross-section and/or 
composition to be neglected; then it makes sense to carry over the concept of 
unidirectional wave motion in uniform systems and develop a nonlinear extension. 
This has been described by Lighthill (1978) in a heuristic manner. Here a more formal 
approach using the multiple scale method (Nayfeh & Mook 1979) is applied in 94 to 
treat unidirectional wave motion within the approximations of geometrical acoustics. 
In this context a treatment for acceleration waves is given for illustration. 

When the non-uniform medium is of finite extent wave evolution is no longer 
unidirectional. Most pronounced nonlinear effects are to be expected when the finite 
system is excited close to resonance since then linear theory predicts large amplitudes 
and, in fact, fails at exact resonance. 

Chester (1964) gives an account of the resonance problem in a uniform system using 
a theory quadratic in the response amplitude. The crucial feature is the existence of 
shock discontinuities travelling back and forth in the layer being periodically reflected 
at both ends. Shock discontinuities exist in a wavelength interval of finite width around 
the resonance length. The size of this interval depends on the excitation amplitude and 
the detuning, i.e. the difference between the actual layer width and the resonance width. 
The same phenomenon appears in a weakly non-uniform system. Keller (1977) 
investigated an unstratified system (shock tube) with a variable cross-section 
distribution A(x)  N x - ~ .  For this particular cross-sectional distribution the problem 
can be reduced to a ‘modified Chester’ case. 

Here the resonance problem is extended to include both stratification and variable 
cross-section. This study is not restricted to Keller’s A - xP2 case. It turns out that for 
the resonance problem the role played by the non-uniformities can be caught by just 
one additional parameter, the admittance of the system (Lighthill 1978). Things 
become more involved once the geometrical acoustics assumption is dispensed with. 
The concept of unidirectional wave motion is no longer applicable; however, the 
resonance problem still makes sense. The result for the resonance problem in this case 
of ‘ sufficiently strong ’ non-uniformity influence is somewhat surprising. Such a system 
may behave like a (frequency) dispersive one in that there is no such thing as the 
appearance of shock discontinuities under near-resonance conditions. The system, 
then, exhibits nonlinear detuning instead, the extent of which primarily depending on 
the particular distributions of the non-uniformities, among other factors. 

In 92 the basic equations are given and put into different forms convenient for 
treatment of the cases addressed above. Section 3 describes the perturbation procedure 
for the resonance cases of $ 5 ,  while 94 treats unidirectional wave motion under the 
conditions of geometrical acoustics. Evolution equations for density and pressure 
perturbation and particle velocity are derived for right-running waves in the quadratic 
approximation. Section 5 investigates the resonances problem in a finite layer, both 
within the geometrical acoustics approximation and for ‘ stronger’ non-uniformities. 
The concluding 96 summarizes the results. 

2. Basic equations 
In this section the basic equations of nonlinear one-dimensional acoustics are 

presented and manipulated into a form suitable for further treatment. The equation of 
continuity is (Lighthill 1978) 

A(x)  p + (puA),  = 0. (2.1) 

A(x)  denotes the variable cross-section distribution of the stream tube and x is the 
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Eulerian space coordinate. Partial time differentiation at fixed x is indicated by an 
overdot and partial differentiation with respect to x at fixed t is expressed by a subscript 
x; p, u are the mass density and particle velocity, respectively. The momentum equation 
is 

p(zi + uu,) +ps = 0, (2.2) 

withp the pressure. It is assumed here that, at least in shock-free regions, fluid particles 
retain their entropy s, so that 

Introducing the isentropic velocity of sound, a, by 

$+us, = 0. (2-3) 

a2 := (PJ,, 
equation (2.3) can be replaced by 

p+up, -ayp+up, )  = 0. (2-5) 

a2 = Y P / P ?  (2.6) 

For convenience ideal gas behaviour is supposed in what follows, so that 

with y the (constant) isentropic exponent. The restriction to ideal gas behaviour is not 
essential and can be generalized easily. 

Equations (2.1)-(2.3) and (2.5) contain only one spatial coordinate; since they are 
used to describe the behaviour in a variable two- or three-dimensional-geometry 
environment, this requires justification. Intuitively it is clear that the variation of the 
wave motion must be 'sufficiently gradual' in the transverse direction for the one- 
dimensional formulation to make sense. Specifically the meaning of u, p, p and s as 
averaged quantities is of relevance. Ockendon et al. (1993) touch upon this matter in 
the context of the resonance problem. In their paper they start from the nonlinear wave 
equation for the velocity potential in a plane wave guide with appropriate boundary 
conditions at the channel walls. A non-dimensional formulation leads them quite 
naturally to the conditions under which use of a one-dimensional model that is 
equivalent to the basic set used here is justified. 

Dissipation and body forces have been omitted from the formulation. Now, there is 
a state of reference in which the system is at rest, i.e. 

u = 0, p = p,(x), p = po  = const., a = ao(x). (2.7) 

Without body forces this state is isobaric. Assume that there is an inherent timescale 
w-l dictated by boundary conditions, say, which is used to make time t non- 
dimensional; also the acoustic lengthscale a0(O)w-' is chosen to make x non- 
dimensional, so that the non-dimensional time I and space coordinate X read 

i= wt, x = wx/ao(0). (2.8) 

The non-dimensional dependent variables are defined here by 

(2.9) 
(2.10) 

(2.1 1) 

Using non-dimensional variables from now on it is convenient to omit the tilde 
7 FLM 257 
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symbols in what follows, so that the non-dimensional variants (2.1), (2.2), (2.5) with 
(2.6) take the form 

1 
ti+uu,+-c+ = 0, 

Y l + P  
(2.12) 

(2.13) 

(2.14) 

p,p, u denote non-dimensional perturbation quantities. The momentum balance 
contains the square of the variable velocity of sound, C;(X), which is given by 

(2.15) 

A(x) and po(x) are non-dimensional from equation (2.12) and have the meaning 
A(x)/A(O), p,(x)/p,(O) in dimensional terms, respectively. Ordinary differentiation 
notation d/dx is used for the non-uniformity terms. 

So far no restrictions on the size of the perturbation quantities p, p,u have been 
imposed. In the next section a perturbation analysis is performed for small but finite 
perturbation amplitudes. Depending on the order of magnitude of the non-uniformity 
influence, quadratic and cubic expansions in the perturbation amplitude are 
appropriate. 

3. Perturbation analysis 
Two cases of different non-uniformity influence deserve particular attention and are 

treated below in preparation for the resonance problems of $5.  
First, consider the non-uniformity terms in equations (2.12) to (2.14) to be O(1) 

quantities, i.e. assume dp,/dx, dA/d, - O( 1). Then, with E scaling the perturbation 
amplitude, which is assumed to be sufficiently small, the following cubic expansion is 
considered : 

(3.1) 
p and p are expanded similarly. In the expansion equation (3.1) ul, u2, u3 are considered 
O( 1) functions, namely 

The same holds for the expansion functions of the p and p series. All expansion 
functions also contain a ' slow-timescale' variable 7 defined by 

u(x, t )  = €U1(X, t ;  7) + €2U2(X, t ;  7) + E3U3(X, t ;  7) + O(g4); 

u1, u2, u3 W ) .  (3.2) 

7 := E 2 t .  (3.3) 
Use of a temporal slow scale variable rather than a spatial slow scale is the appropriate 
choice for finite-interval-problems. 

For infinite-interval-problems this is different, however, for spatially varying non- 
uniformities where it is essential to apply spatial stretching (Nayfeh & Mook 1979). 
Substitution of the multiple scale expansion into (2.12)-(2.14) and expanding the time 
derivative according to 
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(3.5) 
d p 1  + ulx + u, -In (Ap,) = 0, dx 

(3.6) 
1 
Y 

zi, + - C:plx = 0, 

91-Y(P1+ul&lnPo) = 0 (3.7) 

for the O(E) problem. The overdot has the meaning specified by the first term on the 
right of equation (3.4). 

At O(2)  one finds 

(3.8) 
d d 

P z  + u2z + u2 In ( 4 0 )  = - u1 P1 dx In ( 4 0 )  - @1 U l ) X ,  

1 1 
Y Y 

4 +- c;pzs = - U l  U l X  +-c: P l P l X ,  (3.9) 

This completes the formulation of the first case. 

characterized by the assumptions 
The second case assumes the non-uniformities to be O(E). To be specific, it is 

(3.14) 

(3.15) 

From assumption (3.14) dmco/dx" is also an O(P) quantity. Equations (3.14) and 
(3.15) are the assumptions of geometrical acoustics (see e.g. Pierce 1981): the 
lengthscales introduced by the non-uniformities of the medium are assumed to be large 
compared to the acoustic lengthscale ao(0)/o. In other words, on the acoustic 

d" - A  = O ( P ) ,  m = 1,2,3, ... . dxm 

7-2 
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lengthscale there is near-uniform behaviour. With this in mind it is convenient to put 
(2.12H2.14) into the following form : 

(3.16) d 
dx p + u ,  = -u--ln(Apo)-(pu),, 

Zi+-p, = -uuZ+-pPZ--(C:- up,, (3.17) 1 1 1 
Y Y Y 

p-yp = -up,-(p-p)p+ y (3.18) 

Equations (3.16 j(3.18) are a quadratic approximation of the 'exact' basic system 
equations (2.12)-(2.14) in the geometrical acoustics limit with the terms of quadratic 
order written as the right-hand side of the system. It will turn out that a quadratic 
expansion is sufficient for the treatment of the resonance problem in 5 5,  for which the 
previous equations are the basis. 

Applying an expansion of the type (3.1) for the dependent variables results in the 
following sequence : 

A +  U l S  = 0, (3.19) 

4 + (l/Y)Pl, = 0, (3.20) 

0, - ypl = 0. (3.21) 

The slow timescale 7 is now defined to be 

7 := E t ,  (3.22) 
and the time-derivative dot in the previous equations denotes time differentiation with 
both x and 7 held fixed as before. One easily recognizes that the first-order equations 
imply the usual one-dimensional wave equation for ul, 

22, - ul,, = 0, (3.23) 

with unit phase velocity; equivalent equations hold for pl, pl. 
At the next order one finds 

(3.24) 

(3.25) 

d 
P 2  + u2, = - u1 dx In (4%) - (u1 PI), - Plr, 

1 1 1 
Y Y Y 

ez + -Pzz = - u1 Ul, + -P1P1s + - (1 - C3P1, - U17, 

$2 - YPZ = - U l P l Z  + (P1 - P J A  + Y U1& In Po + u1 PlZ . c" 1 (3.26) 

In (3.26) no  derivative terms occur since they cancel out identically due to the 
implications of equation (3.21). After some algebra which uses (3.19H3.21) repeatedly 
one arrives at the following inhomogeneous wave equation for u2: 

ii, - u2,, = - 225, - (1 - ct )  22, + u1 -In A - y(pl plZ) - 2(u1 ulZ) . (3.27) ( d", 1% 
It is worthwhile to give a brief summary of what has been achieved so far and to 

motivate the next step. Multiple (time) scale expansions in terms of the wave amplitude 
6 were used to expand the basic equations of one-dimensional nonlinear acoustics in a 
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density-stratified, variable-cross-section tube filled by an ideal gas. If the non- 
uniformities are O(1) quantities a cubic approximation in the amplitude leads to 
(3.5)-(3.13), whereas under the assumptions made in the geometrical acoustics limit a 
quadratic expansion results in (3.19)-(3.26), which are to be solved. In both cases initial 
and/or boundary conditions have to be specified for completion. The forms given 
above are particularly well suited to the resonance problems; a treatment of the 
resonance problem on a finite interval is presented later. In the next section 
unidirectional wave motion on an infinite x-interval is considered. 

4. Unidirectional wave motion in the geometrical acoustics limit 

(3.16b(3.18), namely 
The form that we shall start from is slightly different from the one given in 

d 
dx p + u, = - u - In (Ap,) - (pu),, 

c2 4 u+"p, = -uU,+-pPxY 
Y Y 

p - y p  = -up,-(p-p)p+y u-lnp,+up, ; (4.3) [ :x 1 
however, the two are equivalent. Substituting the linear approximations 

in the right-hand sides of (4.1) and (4.2) leads to 
P " Y P ,  P " - U x ,  u"C:P, (4.4ac) 

(4.5) 

(4.6) 

d 
dx p + ux = - u - In (Ap,) - ( P U ) ~ ,  

. c: 
U=-P 5 = -  uu, + 4 PPXY 

Y 

p - y p  = y (4.7) 

The continuity equation (4.5) remains unaffected but applying (4.4b, c) to manipulate 
the @u), term one finally finds 

(4.8) 

(4.9) 

d 1 p+u, = -u-ln(Ap,)+, zi2+:p2, 
dx 2CO 

c2 

Y 
u + " p ,  = - uu, + c: pps, 

d 
dx 9-yp = ;y(y- l ) p z +  yu-lnp,. 

Introducing the particle displacement v(x, t )  by 

it is found that, to quadratic order, 
u = v, 

d 1 
p = -0 --v-ln(Ap,)+3zja+~u~, 

dx 2% 

(4.10) 

(4.1 1) 

(4.12) 
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(4.13) 
!! = -vu,-u-lnA+,62++yv~. d 1 and 
Y dx CO 

In the quadratic terms p was replaced by -v, to derive the last two equations. 
Substituting them into (4.9) yields the nonlinear wave equation sought: 

Since, according to (3.14) and (3.15), A(x), po(x) and c,(x) are assumed to be slowly 
varying, the nonlinear wave equation for v(x, t )  may be further simplified to the form 

(4.15) ij-ctuz, = c~u,, = c2u -1nA-22kjz-(y- l ) c ~ ~ , u , ~ ,  

in which the terms v(d2/dx2) In A and (dco/d,) d2 have been ignored as they are of cubic 
order by assumption, 

Equation (4.1 5 )  describes one-dimensional displacement wave propagation in an 
ideal gas in a quadratic approximation in the wave amplitude and, simultaneously, in 
the geometrical acoustic limit, i.e. the non-uniformities are ' sufficiently small'. It allows 
for wave propagation in both directions. For unidirectional waves running to the right, 
let 

d 
O "dx 

(4.16) 

Here it is assumed that f- O(E), with E denoting a typical displacement amplitude 
arising from boundary or initial data. 6 := ex is a 'slow' space variable. As mentioned 
in the previous section the use of a spatially stretched coordinate is implied by the 
spatial variation of the medium (Lighthill 1978). In this context it is convenient to 
make the 'slowly varying' feature of the non-uniformities explicit by considering A and 
co as functions of rather than x, i.e. A = A(6))  and c, = c,(E)). The unidirectional 
wave ansatz equation (4.16), after substitution into the wave equation (4.15), then 
implies 

and, finally, identifying f with u, yields 

d A y + l  u +'u-ln----uuzi = 0. 
dg c, 2c, 

(4.17) 

(4.18) 

For co = const. equation (4.18) specializes to one given by Crighton (1992). The 
associated evolution equations for pressure and density perturbations are 

ps+ipzln d Y--pp Y+1 = 0, 

p5++z1n d Y--pp Y + l  = 0. 

2YCo 

2CO 

(4.19) 

(4.20) 

The quantity Y appearing in (4.19) and (4.20) is referred to as the acoustic admittance 
of the system (Lighthill 1978). It  is an essential quantity, to be met again in $ 5 .  Its 
definition is given as the ratio of the cross-section A and the free wave impedance 
poco (see (5.21)). 
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Equation (4.18) can be transformed to the classical simple wave equation with 
constant coefficients. To motivate this transformation note that the linear portion of 
(4.18) implies that u(A/co)b is constant along the linear characteristics 

dx  
t = J(., 

= const. ; 

the same holds for p Yi and also p Yi. With the nonlinearity present this can no longer 
be true. The linear result, now, suggests the introduction of the new dependent variable 

u:= U(A/C,)i, (4.21) 

so that after substitution of (4.21) into (4.18) the following evolution equation is 
obtained : 

it takes the desired constant coefficient form 

iiq-iiii= 0, 

when the new independent spatial coordinate ~ ( f l )  is introduced according to 

(4.22) 

(4.23) 

(4.24) 

Thus the problem of integrating equation (4.18) for u is analogous to finding the 
solution of (4.23) for a. The corresponding solution procedure for ii is standard 
(Whitham 1974). a is constant along straight line characteristics in the (7, t)-plane, 
whose inclination depends on the magnitude of the perturbation carried. Thus the 
rather complicated problem of nonlinear wave propagation in a non-uniform medium 
can be reduced to an analogous problem in a uniform medium when the assumptions 
of geometrical acoustics hold. This result has been derived previously by Lighthill 
(1978) in a more heuristic way. Equations (4.19) and (4.20) for perturbation pressure 
and density, respectively, are treated in the same manner. 

An illustration of the interplay between nonlinearity and non-uniformity is provided 
by the behaviour of acceleration waves. Introduce 

(4.25) t' = t - T(x), 

with (4.26) 

where t' = 0 denotes the wave front position and xo is the wave front initial position. 
Let b(6) be the acceleration along the wave front t' = 0, i.e. 

ii = b(C) t'. (4.27) 

Equation (4.27) implies that u is continuous across the wave front t'=O, but z i  
undergoes a finite jump of magnitude b(6) (co(()/A(fl))x along the wave front. Adjacent 
to the acceleration wave, ahead of the wave front t' = 0 there is a state of quiescence. 
Inserting the ansatz into (4.22) yields 

(4.28) 
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From (4.28) one concludes that b decreases (increases) for increasing (decreasing) 
c, Yi = (Ac;);, i.e. for diverging cross-section and positive temperature gradient in the 
propagation direction the effect of nonlinearity (in this approximation) is weakened by 
non-uniformity ; the nonlinearity effect is enhanced by non-uniformity if propagation 
is into a narrowing tube that becomes cooler towards the narrowing end. In the 
intermediate case of Ac: equalling a constant (cooling towards the diverging end or 
heating towards the narrowing end), which may be taken as unity, the rate of nonlinear 
steepening is uninfluenced by non-uniformity . 

The picture developed above also makes it plausible that, with non-uniformity 
present, periodic nonlinear free waves may exist, which is in sharp contrast to the 
uniform case where they do not (Keller & Lu Ting 1966). If the wave experiences 
steepening on the way to one reflecting end it will experience flattening on the way back 
to the other reflecting end, so that the net nonlinearity effect is zero. 

5. The resonance problem 
Linear theory based on either (3.5)-(3.7) in the case of an O(1) non-uniformity or 

(3.19)-(3.21) in the limit of geometrical acoustics does not yield a bounded response 
under resonant conditions. Even with some sort of damping present response 
amplitudes may become large enough to invalidate the linear theory. 

Chester (1964), gave a quadratically nonlinear treatment of the resonance problem 
in a uniform rigid tube with one end closed and a piston oscillating sinusoidally at the 
other end that catches the essentials of the phenomena observed in experiments (Lettau 
1939; Saenger & Hudson 1960). In a finite frequency band around the resonance 
frequency, the width of which depends on the excitation amplitude and the detuning 
(i.e. the deviation from exact resonance), shock waves appear which travel back and 
forth in the tube, being periodically reflected between the closed end and the oscillating 
piston, A similar treatment for resonance in a tube with variable cross-section 
A(x) - xP2 but without stratification was given by Keller (1977), where the variable- 
cross-section case could be reduced to a ‘modified’ Chester case leading to results 
qualitatively similar to the uniform case. 

Here a treatment is given that in the geometrical acoustics limit includes density 
stratification and variable-cross-section effects not restricted to any particular shapes 
of A(x)  or p&) as long as incommensurability of the eigenvalue spectrum of the 
linearized (non-excited) system is ensured. It will be found that even under these more 
general conditions Chester’s method is applicable. If the admittance distribution is 
symmetric with respect to the centreline of the system there is even quasi-uniform 
behaviour at exact resonance. 

To be specific, the following boundary conditions are considered : 

x = o :  u = o ,  (5.1) 
x = A-asint: u = asint, (5.2) 

h := oL/a,(O). (5.3) 
Here, a denotes the excitation amplitude (i.e. the piston Mach number amplitude based 
on a,(O)) whose relation to the response amplitude e is anticipated here to be 

E = a r ,  (5.4) 
and h is the non-dimensional system length. The solution sought is required to fulfil the 
periodicity condition 

( 5 - 5 )  

1 

u(x, t )  = u(x, t + 2x), 
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and the mean value condition 1; U(X, t )  dt = 0. 

With the time variable non-dimensionalized by the excitation circular frequency w the 
period of the solution is 27t for all x of interest, see (5.5). 

To express the closeness of the system’s length h to the primary resonance length ‘II 
it is appropriate to write 

Let d be called the ‘detuning’ from exact resonance ’4 = 0. Expanding the boundary- 
condition equation (5.2) using the representation according to (5.7) and (3.1) for small 
E with the slow timescale 7 obeying (3.22) one finds 

(5  * 8) 
u2(n, t ;7)  = sint-du1,(7t,t;7). (5.9) 

At the closed end, x = 0, u1 vanishes. Thus u1 can be expressed by 
(5.10) 

as the superposition of an as yet undetermined pair of right- and left-running 
d’Alembert waves of shape f satisfying ul(O, t ; 7 )  = 0. The boundary condition (5.8) 
implies 2nperiodicity in the ‘ fast’ argument t f x, i.e. 

f(t f X ; 7) = f ( t  * x 4- 21t ; 7). (5.11) 
At the next order one has to solve the inhomogeneous wave equation (3.27) with p1 

h = n + s d ,  ’4 = O(1). (5.7) 

Ul(5t, t ;  7 )  = 0, 

u,(x, t ; 7 )  = f ( t  - x ; 7 )  - f ( t  + x ;  7 )  

given by 
pl(x, t ;  7) = f ( t  -x; 7 )  + f ( t  + x ;  7), (5.12) 

subject to the boundary condition (5.9) and u2(0, t ; 7 )  = 0. Substituting (5.10) and 
(5.12) into the right-hand side of (3.27) yields an inhomogeneous wave equation for u2 
with the shapef(to be determined) appearing in the source terms. A particular solution 
is given below. To derive it note, that, if 

a particular solution is given by 

(5.13) 

(5.14) 

This can be verified by substitution. The particular solution fulfils the condition of 
vanishing u2 at x = 0. After some effort one, eventually, finds the particular solution 
(using (5.13) and (5.14) wherever necessary) as 

u2 = - xV;(t - x ; 7 )  +f,(t  + x ;  7)] + t (y + 1) x l f y t  - x ; 7 )  + f “ t  + x ; T)]  

-:(y - 3) [F(t-  X ;  7 ) f ( t  + X; T )  - F(t + X ;  7) f ( t -  X; T ) ]  

- [ [6 - R&)] V(t + x- 25; 7) -f(t --x + 25; 7)] d t  

+ lnA(5) V(t+ x-25; 7 )  + f ( t  --x+ 2t;  T)] d t  

- ($ln A(5))  I f ( t  + x - 2 t ;  7) - f ( t  - x + 26; 7)] dt ,  

I 
(5.15) 
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with (5.16) 

The equation determining f(. ; T )  follows by substituting (5.10) and (5.15) into the 
boundary condition at the oscillating piston, (5.9), 

sint = -2n~( t -n ,7)+~n(y+ 1)(fz(t-n,7)) 

(c,([)-l)dE f ( t - n , ~ )  1 -: [ln Y(6) If(t-n - 25,7) +f(t -n + 26, T)] dE. 

The last equation governs the evolution of the nonlinear signalfrom the state ofrest. 
Cox & Mortell(l983, 1985) use this approach to describe resonant gas oscillations and 
resonant water wave oscillations in shallow water in a uniform environment. The long 
time response of the system is described by the steady-state version of the previous 
equation (a/& = 0); for steady state it can be integrated one more time. The resulting 
equation is then brought into the final form; 

cosz;8+c = (F-6)Z- [ln Y(c)[f‘(8-26)+1”(8+2$)]d6. (5.17) 
2[n(y + l)$ 

Here o:= t-7r (5.18) 

is the shifted time, and c is a constant of integration, whose determination is part of 
the solution procedure for (5.17). F(t) is defined as 

F(t) := &(y+ 1)]9-(t), (5.19) 

and is simply the appropriately redefinedf; it should not be confused with the F of 
(5.16) where it had the meaning of the primitive function o f f ;  it was used only 
temporarily then. A modified detuning 6 appears, which is related to the detuning A by 

(5.20) 

6 is an O(1) quantity. 

in the appearance of the system’s admittance (Lighthill 1978) 
The integral term in (5.17) essentially represents the non-uniformity effect reflected 

(5.21) 

The geometrical acoustics limit implies Y(x) to be a slowly varying function on the 
scale of a typical wavelength, which is O(n) for the case under consideration. 

For convenience it should be mentioned that the manipulations leading to equation 
(5.17) include the repeated application of the 2n-periodicity offand F, respectively, see 
(5.1 l), and the use of the mean value condition (5.6); the final form of the integral term 
in (5.17) is arrived at by applying partial integration several times. Finally the 
trigonometric identity cos 0 = 1 -2 sin2+8 is used to rewrite the excitation term. 

The solution of (5.17) describes the steady-state signal at the oscillating piston. The 
non-uniformity effect is represented by the modified detuning 6 and, more importantly, 
by the admittance integral. For uniform conditions Y is a constant that can be chosen 
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to be unity without loss of generality. Also, if A(x)  and po(x) vary in such a way that 
Y= 1 the integral term in (5.17) vanishes identically and one directly arrives at 
Chester’s equation (Chester 1964). The constant- Y case means that A(x)  and Lp,(x)f 
are proportional for isobaric reference states. In other words, for the resonance 
problem in the geometrical acoustics limit the effect of the variation of A(x)  can be 
compensated by imposing a negative temperature gradient where A(x) increases and 
vice versa; a similar situation was found for the behaviour of acceleration waves at the 
end of $4. The only influence of the non-uniformity apparent, then, is the rather trivial 
modification of the detuning parameter S according to (5.20) ; it reflects the correction 
of the actual resonance frequency due to the (weak) effect of stratification upon the 
linear phase velocity. 

For uniform systems (5.17) reduces to Chester’s classical solution (Chester, 1964), 
the outstanding feature of which is the existence of shock waves in a &band given by 
- 2/x < 6 < 2/x ; outside this range the solutions are continuous. It may be suspected 
that discontinuous solutions of (5.17) also exist with the non-uniformity term included. 
In fact, a discontinuous solution of (5.17) can be determined very easily in the case 
8 = 0; it is readily confirmed by substitution that 

F=cos;8 for 0<8<271 .  (5.22) 

The solution is to be imagined continued 2x-periodically outside the (0,2n)-interval, 
with the (shifted) shock arrival time 8, from the mean value condition (5.6) for F given 

OS = ..., -4n, - 2 ~ , 0 , 2 ~ , 4 n ,  ... . (5.23) 
by 

The condition under which the solution according to (5.22) holds turns out to be 

1 In Y(6) cos [d t  = 0, 

i.e. Y(x) must be symmetrical about x = $c, 

(5.24) 

(5.25) 

respectively. The magnitude of the jump discontinuity at 0 = 8,, IlFll, is under these 
circumstances found to be 

IlFll = 2, (5.26) 

and the jump occurs symmetrically about the line F = 0. Furthermore, the constant of 
integration in (5.17), c, is calculated as 

c = 0. (5.27) 

For a graphical illustration of this solution the reader is referred to figure 3 of 
Chester (1964). Thus, for non-uniformities that fulfil the symmetry condition (5.25) 
and vanishing detuning S = 0 the existence of a discontinuous solution is illustrated. A 
remarkable fact about this solution is that although non-uniformity is present it has no 
influence upon the shape of the signal, if the admittance of the system is symmetric 
about the middle section. For 6 =# 0 or unsymmetric admittance things become more 
involved. A statement that still can be made regardless of the particular form of the 
admittance is that for discontinuous solutions of (5.17) F always jumps symmetrically 
to the line F = 6, since the non-uniformity integral represents a continuous function of 
8 even for discontinuous F. The constant of integration, c, appearing in (5.17) has to 
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be determined such that min [(F(8) - 6)2] = 0 V 8 E [0,21t]. The mean value condition 
then serves to fix the temporal shock position Os, whereas for continuous solutions the 
mean value condition is used to fix c. 

Ockendon et al. (1993) and Keller (1977) give a similar treatment of the resonance 
problem without stratification, emphasizing the geometrical effects. In different ways 
they derive an equation that is equivalent to (5.17). The generalization to include 
stratification is a straightforward matter and the result is that the type of equation one 
deals with remains unchanged with stratification included in addition to variable 
geometry. Thus stratification- and variable-geometry-non-uniformity can be combined 
by the admittance concept in the geometrical acoustics limit. 

Progress in solving (5.17) is hard to acheve beyond this point without specifying 
Y(x). Ockendon et al. (1993) take the route of choosing a particular shape for the cross- 
section distribution. For the particular cross-section shape characterized by parameter 
K measuring the 'size' of the geometrical non-uniformity they discuss the division of 
the (K, A)-plane into shock-free and discontinuous regions; for details the reader is 
referred to the above paper. 

Next, a brief sketch of how to proceed under conditions of O(1) non-uniformities, 
i.e. when 

(5.28) d d 
-lnA, -lnp, = O(I), dx dx 

is given; i.e. non-uniformity terms arise at the same perturbation level as the linear 
terms. The system of field equations to be solved consists of (3.5)-(3.13). The boundary 
conditions are as before (see (5.1)-(5.3)). The excitation amplitude a of the oscillating 
piston occurring in (5.2) is now related to the response amplitude E by 

€ = az. (5.29) 

The sygem length h is assumed to be in an O(E2)-neighbourhood of the resonance 

h = h+€24, A = O(1). (5.30) 

h denotes one out of infinitely many denumerable eigenvalues of the following self- 
adjoint Sturm-Liouville eigenvalue problem : 

1 

length A, * 
* 

A (In A)"+-, q5 = 0, "1 CO 
(5.31) 

* 
$(O) = $(A) = 0. (5.32) 

Primes indi%ate ordinary differentiation with respect to x. The eigenfunction $(x) to the 
eigenvalue h arises as the multiplicative factor of the separation ansatz 

u, = a(7) $(x) sin ( t  + 1/.(7)). (5.33) 

The solution of equation (5.33) solves the problem 

d2 A (Au,,),+u,A-lnA--iil = 0, 
dx2 4) 

(5.34) 
* 

U1(O, t ;  7 )  = u,(h, t ;  7 )  = 0 .  (5.35) 

Equation (5.34) is derived by eliminating p l , p l  from the system of equations 
(3.5)-(3.5); a(7), 8(7) denote slowly varying amplitude and phase with 7 defined by 
(3.3). 
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At the next order one has to solve (3.8)-(3.10) subject to the boundary conditions 
~ ~ ( 0 ,  t ;  T )  = u,(A, t ;  r )  = 0. (5.36) 

For what follows it is assumed that, if h is an eigenvalue, 2 4  and 3h are not. Then the 
one-mode-ansatz equation (5.33) proves adequate. The elipination procedure to derive 
an inhomogeneous form of (5.34) for u2 is as before. If 2h is not an eigenvalue then a 
particular solution is readily found to be of the form 

* 
* * * 

u2 = u2(r) @(x) sin (2t + 28(7)). (5.37) 
@(x) can be expressed in terms of the eigenfunction $(x) of the first-order problem, but 
it is not displayed here for brevity. 

At third-order secular terms arise on the right-hand sides of (3.1 1)-(3.13); the 
boundary conditions of the third-order problem are 

(5.38) 
(5.39) 

The detuning d as defined in (5.30) enters the problem on the*right-hand side of the last 
boundary condition. Without going into further detail, if 3h is not an eigenvalue, the 
solvability condition for the 0 ( e 3 )  problem turns out to be 

dB 
d r  i--dB+NIB12B = K. (5.40) 

The complex amplitude B(r) is simply related to the real quantities a(7), O(7)  by 
B = a exp (ie). (5.41) 

In (5.41) i is the imaginary unit and N ,  K denote real constants which depends on 
integrals of2roducts of the eigenfunction $ and its first derivative taken over the 
interval (0,h); they are not given here for brevity. K is a measure of the external 
excitation and can be scaled to unity since (5.40) is a two-parameter evolution equation 
only, i.e. its solution depends on d/K and N / K  rather than on N ,  K ,  A individually. 
N is a parameter which may take either sign. K = 0 marks the case of nonlinear free 
oscillations of the system with the well-known ‘Stokes’ dependence of the free 
oscillation frequency and amplitude. K = 0 appears as the backbone parabola in the 
(a, &plane with its apex at the origin. Steady-state solutions show hard and soft spring 
behaviour of the Duffing oscillator (Nayfeh & Mook 1979): for N > 0 ( N  < 0) there 
is a bending over to the right (left) of the multivalued response curve in the (a, A)-plane 
with stable and unstable branches. 

Recapitulating, in the geometrical acoustics limit it was found that the geometrical 
effects and non-uniformities of stratification could be combined by making use of the 
concept of admittance: one result was that the system behaves quasi-uniformly for 
unidirectional waves for constant admittance. Quasi-uniform behaviour is also found 
if the admittance is distributed evenly with respect to the midpoint of the system for 
exact resonance. For O(1) non-uniformities the concept of admittance looses its 
strength. Nonlinearity and geometrical and stratification effects interplay and 
contribute to N rather individually. One may speculate that, contrary to the previous 
situation, it may then happen that the parameter N disappears for particular 
distributions of cross-section and stratification. A change of sign of N may occur even 
for a uniform system as, for instance, in the resonant water-wave sloshing problem 
investigated by Ockendon, Ockendon & Johnson (1986) with frequency and amplitude 
dispersion interaction determining the sign of N according to the choice of system 
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parameters (undisturbed depth etc.). If that occurs a cubic expansion in the response 
amplitude e is not sufficient. Although the N = 0 case has not yet been investigated, it 
is obvious how to proceed: the expansion has to be driven to fifth order in E in (3.1) 

(5.42) 
with 

replacing (5.29) to eventually arrive at an evolution equation of the form 

E = (a);, 

(5.43) 
* 

E 4 2 =  A-A, d"= 0(1), (5.44) 
? = E 4 t ,  (5.45) 

the constants 3, being real. 
The essential prerequisite for (5.40) or (5.43) to be valid is the incommensurability 

of the eigenvalue spectrum of the Sturm-Liouville system equations (5.3 l), (5.32). 
Ockendon et al. (1993) distinguish several cases of partial commensurability and 
discuss implications qualitatively. A case that belongs to the class of problems 
represented by (5.40) and illustrates the point is Chester's (1991) work on resonance in 
a spherical cavity ; the spectrum of the linearized spherical problem is incommensurate 
and the steady-version of (5.40) describes the trans-resonant regime. No attempt has 
been made to find conditions on A(x) ,  po(x) ensuring eigenvalue spectrum 
incommensurability. The quantity that presents the most pronounced inconvenience 
with respect to analytical treatment is the mass density distribution in the reference 
state po(x). A reasonable ci(x) distribution would be a straight line reflecting a constant 
temperature gradient along the tube axis and a spherical, cylindrical or exponential 
A(x)-distribution. No representability of the eigenfunctions of the corresponding 
system (5.31)' (5.32) in terms of (tabulated) functions could be found. So one has to 
resort to numerical integration for further treatment, i.e. the ultimate determination of 
the constants K,  N .  That is beyond the scope of the present paper which is rather, 
aimed at contrasting the different features of the resonance response with O(e) and O( 1) 
non-uniformi ties. 

Keller's (1 977) treatment of the variable-cross-section resonance problem takes an 
interesting 'intermediate' position between the 0 ( e )  and O( 1) non-uniformity- 
resonance cases : although his non-uniformity influence is O( l), the pertinent equation 
he is led to is not (5.40) but an equation equivalent to (5.17); also the response- 
excitation relation (5.4) applies in his case rather than (5.29). The reason for this 
behaviour is that for A(x) - x - ~  the eigenvalue spectrum of the linearized system is 
fully commensurate; in fact, Keller deliberately chose the cross-section distribution in 
such a way as to ensure commensurability of the eigenvalues. Then all modes resonate 
simultaneously for the primary mode being excited as in the case of a uniform system. 

6. Concluding remarks 
Two problems of weakly nonlinear acoustic wave propagation in non-uniform 

media have been treated above. 
First, unidirectional pulses are considered in the limit of geometrical acoustics with 

nonlinearity taken into account up to quadratic order in the wave amplitude. It is 
assumed that within this approximation both the nonlinearity and the non-uniformity 
effects are of the same order of magnitude. The shape of the unidirectional wave 
experiences distortion due to nonlinearity and non-uniformity. Mathematically the 
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problem can be reduced to a kinematic or simple wave equation with constant 
coefficients that is easily solved by the method of characteristics. The solution implies 
that the signal evolves along characteristics according to linear theory with the shape 
of the characteristics being determined by nonlinearity. The effects of the mutual 
influence of nonlinearity and non-uniformity are demonstrated by looking at the 
behaviour of acceleration waves with the result that non-uniformity may be enhancing 
or weakening amplitude dispersion. 

Second, externally excited waves on the finite interval are considered with nonlinear 
effects primarily pronounced close to resonance. If nonlinearity and non-uniformity 
effects are assumed to be of the same order of magnitude as before discontinuous 
solutions may occur for near-resonant conditions. Weak periodic shock waves 
dissipate the energy that is pumped into the system by external harmonic excitation. 
Imagining the discontinuous signal to be decomposed into its Fourier components 
suggests that all eigenmodes of the linearized system contribute to and participate in 
generating the discontinuous response. For sufficiently weak non-uniformities shock 
formation cannot be prevented if the system is close enough to resonance. 

The result is markedly different for a system with O(1) non-uniformity in near- 
resonance. Including nonlinearity up to cubic order in the wave amplitude it turns out 
that the bounding mechanism for the response amplitude is then nonlinear detuning to 
which the only excited mode contributes by interacting nonlinearly with itself. 

Unlike a uniform system, the eigenfrequencies of a non-uniform finite system are in 
general not integer multiples of the primary frequency. Assuming incommensurability 
of the eigenvalue spectrum Keller & Lu Ting (1966) have shown that nonlinear free 
waves are periodic on the finite interval; with non-uniformity present periodic 
solutions exist with their frequency depending on the magnitude of the wave 
amplitude. The energy stays primarily confined to the resonating mode interacting with 
itself. With external periodic excitation present such a system reacts by nonlinear 
detuning, in contrast to the nearly uniform system (geometrical acoustics) where a 
discontinuity develops that ultimately dissipates the perturbation. The confinement of 
the energy to one mode also accounts for the fact that the response is much larger, i.e. 
O(&) for 0(1) non-uniformities rather than O($) for O(e) non-uniformities with all 
modes resonating and participating in the response. 
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